A guide to a PhD in Life Sciences in Europe : Part 4 – How to determine your ‘area of interest’?

You are about to finish your master’s degree soon.
You already know people around you who have gone to Europe for a PhD. You have
an idea about various universities offering a PhD program. You are already
fantasizing walking down the cobblestoned alleys of a typical European town.
Now it’s time for you to shortlist the universities and start applying. You
start using the internet and Google throws up loads of information about
various universities in Europe offering a PhD. You are overwhelmed and confused
with this. Moreover, almost every application procedure wants you to write a
statement of purpose (SOP). The principal investigators of research groups want
to know your motivation behind applying to their labs. They want to understand
what is your area of interest, which skills you have, and how your presence
will benefit their ongoing research. If you are aware of your interests and have
a good career plan, things are easy for you. However, this is not the case with
most students. Most students lack the exposure to the various research fields
of biological sciences, and thus, are unable to decide what interests them most.
Some students, however, are well-read, have a good theoretical understanding of
various topics, but do not understand what exactly does it mean by doing
research in a particular field of life sciences. The whole thing results into
either a failure in getting a PhD position or ending up in a wrong place. To
avoid this mess, it is very important to clear the confusion in your head and
decide what exactly you wish to do.

First of all, let’s have an overview of some of
the important areas of research in the field of life sciences. I have avoided
the textbook definitions and tried to make it as simple as I can. The list is
not exhaustive.

·      Biochemistry – It is a study of chemical
processes occurring within living organisms. It involves studying biomolecules,
metabolic reactions and their regulation. This field mainly deals with
carbohydrates, lipids, and proteins. The laboratory techniques that exploit the
chemical nature of biomolecules are termed as biochemical techniques.
Chromatography and electrophoresis are two major biochemical techniques.

·     Molecular biology and genetic
engineering
– It is
a study of nucleic acids and the processes involved in the central dogma of
life. The research questions associated with DNA replication, transcription,
translation, and the regulation of these processes are grouped under the field
of molecular biology. Genetic engineering or recombinant DNA technology is a
set of techniques used for manipulating DNA sequence. Although it is considered
as a separate field, it is based on the concepts of molecular biology.

·     Biophysics – It is the study of how laws of
physics govern the processes occurring in living organisms. It involves
studying interactions between biomolecules, how proteins fold, how chromosomes
are organized, etc. Techniques such as spectroscopy and microscopy, which are
based on the physical properties of biomolecules are included amongst
biophysical techniques.

·      Structural biology – It is all about determining the
structure of biomolecules, mainly proteins. Since the structure of a molecule
is its physical property, the field of structural biology is considered as a
subset of biophysics. This field involves techniques such as X-ray
crystallography and NMR.

·     Bioinformatics and computational biology
– Bioinformatics is the use of computer technology to organize and study
biological information. For example, creating and maintaining genomic sequence
database, looking for homologs of a particular protein by surveying the
database, and other similar approaches. On the other hand, computational
biology involves developing novel computational tools for addressing biological
questions. For example, writing a computer program for an automated analysis of
microscopic images. Computational biology requires a thorough knowledge of
computer programming. The tools of bioinformatics and the advances technique of
obtaining biological data (DNA sequencing, metabolite identification, protein
sequencing, etc.) have given rise to specialized areas of study such as
genomics, proteomics, metabolomics, metagenomics, etc.

·    Cell biology – It is the study of processes
that occur in a single cell. For example, intracellular trafficking, cell
movement, cell division, functions of cell organelles, and other similar
topics.

·      Microbiology – It is the study of
micro-organisms, mainly bacteria. Quorum sensing, biofilm formation, antibiotic
resistance, bacterial chemotaxis and motility are some of the important
research areas in the field of microbiology.

·       Immunology – It is the study of the immune
system.

·     Infection biology – This field
involves studying the biology of the infecting agent in the context of the
infection process. For example, studying the processes occurring during
infection by the malarial parasite or understanding how Vibrio cholerae
causes the symptoms of cholera. This field also explores the possible
strategies for prevention and treatment of infectious diseases.

·      Evolutionary biology – This field studies
different processes related to evolution, such as origin of life, speciation,
natural selection, sexual selection etc. These processes are now also being
studied at a molecular level using advanced techniques.

·     Systems biology – It is the study of systems of
biological components which may be molecules, cells, organisms or even species.
It involves quantitative measurement of behaviors of the components under
study.

·   Synthetic biology – It is, a) the
design and construction of new biological parts, devices, and systems and b)
the re-design of existing biological systems for useful purposes. For example,
engineering bacteria for a targeted drug delivery or rewiring the metabolism of
an organism for industrial production of a metabolite.

·       Cancer biology – As the name suggests, it
involves understanding the various aspects of cancer and looking for its cure.

·       Neurobiology – It is the study of the nervous
system.

·      Developmental biology – This field
involves studying how a multicellular organism is formed from a single cell.

·       Botany – Study of plants.

·       Zoology – Study of animals.

·       Ecology – Study of the ecosystem.

All the above fields are trying to understand
the mystery called ‘life’. As you may recollect from the introductory texts of
your high school biology, life is organized at various levels. We see life in
the form an organism. The organism is coordinated system of organs, which are
made up of tissues and cells. Cells can be broken down to molecules and atoms. Organisms
of the same kind make a species whereas organisms of different kinds make an
ecosystem. If you look at the descriptions of all the above fields, you will
notice that they ‘look’ at ‘life’ at various levels and in different frames of
reference. Botany, Zoology, and Microbiology focus on the organism itself.
Ecology and evolutionary biology study groups of organisms. Immunology,
neurobiology, cancer biology, and developmental biology are fields which
analyze processes within an organism. Cell biology focuses on a single cell,
whereas biochemistry, molecular biology, and biophysics deal with molecules
within or associated with the cell. Some fields such as bioinformatics, genetic
engineering, and structural biology are only tools which help you understand
the processes associated with ‘life’. Fields like synthetic biology and systems
biology approach the same questions with a completely different perspective.

Although life sciences have been divided into
many major and minor disciplines, the nature of research is always
interdisciplinary. Let’s take an oversimplified example. Say, you have noticed
natural degradation of a xenobiotic compound at a landfill site. The question
here is, which microbial agent(s) is responsible for the degradation of the
xenobiotic compound? Can this agent be exploited to degrade the same compound
at other landfill sites? The first step here is to isolate the microbial agent.
This procedure makes use of the principles of microbiology. The techniques of
microbiology will lead you to the isolation, identification, and
characterization of the microorganism. The next step is to find out the enzyme(s)
synthesized by the microorganism, which degrades the xenobiotic compound. Tools
and techniques of biochemistry, molecular biology and bioinformatics will help in
this investigation. To understand the exact mechanism of the enzyme action,
structural biology can be used. The question would be whether this enzyme or
the microorganism itself can be used for xenobiotic compound degradation at
other sites. The microorganism perhaps needs a specific microhabitat; in which
it can express the enzyme of interest. The study of a microhabitat belongs to
the field of microbial ecology. Can you rewire the network of genes so that the
microorganism can express the enzyme under conditions of your choice? To
approach this question, you have to enter the field of synthetic biology. During
the whole process, you may need to purify a protein, acquire microscopic
images, run enzyme assays, construct mutants, perform PCR, and so on. So, which
field does this research question belong to? At a bird’s eye view, the research
question belongs to environmental microbiology. However, to answer the research
question one needs to use principles and techniques of various other fields. Your
PhD may be just about the identification of the gene that encodes the enzyme
involved in the degradation of the xenobiotic compound. In this case, you will
be spending most of your time with molecular biology techniques. But, you will
also gain insights into the field of microbial ecology and the techniques
specific to it.

Research questions in the fields of cancer
biology, neurobiology, developmental biology, and immunology are way more
complicated than the one mentioned above. You entire PhD can be based on
understanding the function of a single protein domain, which is likely to be
involved in a certain pathway that is related to a specific form of cancer. In
this case, you will be using all the principles and techniques of the
disciplines that ‘look’ at life at a molecular level. Also, you will study the
basics of cancer biology and various other things related to that field. In
short, a PhD is all about giving you a thorough understanding of a particular
field at all levels. Eventually, when you succeed, it will be a step (albeit,
small) towards finding a cure for cancer. Overwhelming, isn’t it? That’s why it
is called ‘research’!

Now let’s move to the strategy of determining
your own area of interest. There are two ways of doing it. One is
‘textbook-to-research group’ approach and the other is ‘choosing the most
interesting research group’ approach. Is there something from our textbook that
interests you a lot? Are you fascinated with enzymes? Do you find it
interesting to study how neurons function? Are you excited about playing with
computer-generated models of biomolecules? Regardless of whether we understand
the nature of research, there is always something that we find exciting. Choose
any such research area and start reading the latest research literature related
to that area. If you cannot choose one, choose three and rank them according to
your level of involvement.  Understand
the tools and techniques that are used by researchers in that area. Talk to
some PhD students working in that area. Attend lectures given by the scientists
working in that area. Check if you have sufficient theoretical and practical
background to work in that area. If you don’t have enough experience, consider
doing a small summer internship or doing your M.Sc. dissertation in that area.
After having a lookout, you can start looking for the research groups working
in the particular area. Remember, it is an ‘area of interest’ and not a
specific research question.

Sometimes, it can happen that you find many
fields equally enticing. In this case, think the opposite way. Is there
something that you do NOT wish to do? I went through a similar crisis while
applying for a PhD. I used to like most disciplines of life sciences and I was
confused about which one to choose. However, there were certain things that I strongly
disliked. I never enjoyed handling animals for performing experiments. So, the
research areas like immunology, infection biology, cancer biology,
neurobiology, and developmental biology, which may involve animal handling were
not for me. Also, I never found it exciting to sit in front of a computer day in
and day out. Thus, I excluded the research areas, which extensively used the
tools of bioinformatics and computational biology from my list. Consequently, I
was left with fewer research groups that were working in the areas I was
comfortable with. I simply chose a research group that was working on something
exciting and was hiring PhD students. In short, if you do not know what you
like, you should at least know what you do NOT like!

The second approach is to choose the most
interesting research group out of the available options. If you neither have
something exciting, nor something that you find boring, it can be a bit
difficult to choose the research group. In this case, you can simply start
looking at the available PhD positions and check if you find something generates
curiosity. Have a look at the research group’s homepage. Go through their
publications. Try to get an idea of the tools and techniques they are using.
Check if your background is suitable for working in that research group. If
everything fits well, hit the apply button. This approach can be tedious,
time-consuming, and also frustrating. Remember, it is of utmost importance that
you have a passion (or at least some level of interest) for working in a
particular research area. It is this passion that will help you sustain during
in the ups and downs of a PhD life!


I hope this post has helped you to identify
your very own area of interest. If you have any further questions, please
comment below.  I would love to answer
them. If you have any suggestions to improve the contents of this post, please
do not hesitate to comment. 

0 thoughts on “A guide to a PhD in Life Sciences in Europe : Part 4 – How to determine your ‘area of interest’?

  1. Hi Vihang,
    Thank you for a detailed post. I have one question I would like a PHD student perspective. You have spoken extensively about single person trying to get a PHD. Do you know of anyone who has a family( a small child included) who is doing their phd?. From this point of view could you comment on( if you can)
    1. How about the move to study in germany with family?
    2. What are the difficulties in visa process?
    3. Is the stipend enough to manage a household( even a frugal one)
    4. WHat about some education for a minor child( say a 5yr old). Is there special requirements for a foreign student to be admitted to regular school?. Is it even a possiblity?
    5. What about the spouse.? can they work on a dependent visa? or are they required to stay at home?

    These are some key questions for me as I am considering a PHD in bioengineering. But cannot do it leaving behind a small child. If you know of PHD student with family who can answer these questions for me I would truly appreciate the help.

Leave a Reply